特点
- 用着方便,可读性高(妈妈再也不用担心我忘记调用unclock 了)
- @synchronized block在被保护的代码上暗中添加了一个异常处理。为的是同步某对象时如果抛出异常,锁会被释放掉。
- 反正是我看到的、用的,第一个锁,在很久很久以前。
疑问
- 锁是怎么与你传入的 @synchronized的对象关联上的?
- 传入一个nil 会怎么样?
- @synchronize 会retain 被锁住的对象么?
- 如果你传入的 @synchronized的对象在@synchronized 的block里面被释放或者和被赋值为nil将会怎样?
源码
头文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Begin synchronizing on 'obj'.
* Allocates recursive pthread_mutex associated with 'obj' if needed.//原来有一个递归锁啊
*
* @param obj The object to begin synchronizing on.
*
* @return OBJC_SYNC_SUCCESS once lock is acquired.
*/
OBJC_EXPORT int
objc_sync_enter(id _Nonnull obj)
OBJC_AVAILABLE(10.3, 2.0, 9.0, 1.0, 2.0);
/**
* End synchronizing on 'obj'.
*
* @param obj The object to end synchronizing on.
*
* @return OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
*/
OBJC_EXPORT int
objc_sync_exit(id _Nonnull obj)
OBJC_AVAILABLE(10.3, 2.0, 9.0, 1.0, 2.0);
enum {
OBJC_SYNC_SUCCESS = 0,
OBJC_SYNC_NOT_OWNING_THREAD_ERROR = -1
};
#endif // __OBJC_SYNC_H_
.mm 文件
#include "objc-private.h"
#include "objc-sync.h"
//
// Allocate a lock only when needed. Since few locks are needed at any point
// in time, keep them on a single list.
//
typedef struct SyncData {
struct SyncData* nextData;//每个SyncData 也包含一个指向另一个SyncData的指针,你可以把每个SyncData结构体看作是链表中的一个元素
id object;//就是我们给@synchronized 传入的那个对象
int threadCount; // number of THREADS using this block,这和个SyncDat对象中的锁会被一些线程使用或等待,threadCount 就是此时这些线程的数量,它很有用处,因为SyncData 结构体会被缓存,如果threadCount==0,就表示这个SyncData 可以被复用。
recursive_mutex_t mutex;// 跟object 关联在一起的锁
} SyncData;
typedef struct {
SyncData *data;
unsigned int lockCount; // number of times THIS THREAD locked this block
} SyncCacheItem;
typedef struct SyncCache {
unsigned int allocated;
unsigned int used;
SyncCacheItem list[0];
} SyncCache;
/*
Fast cache: two fixed pthread keys store a single SyncCacheItem.
This avoids malloc of the SyncCache for threads that only synchronize
a single object at a time.
SYNC_DATA_DIRECT_KEY == SyncCacheItem.data
SYNC_COUNT_DIRECT_KEY == SyncCacheItem.lockCount
*/
typedef struct {
SyncData *data;//指向SyncData节点链表头部的指针
spinlock_t lock;//防止多个线程对此列表做并发修改的锁
char align[64 - sizeof (spinlock_t) - sizeof (SyncData *)];
} SyncList __attribute__((aligned(64)));
// aligned to put locks on separate cache lines
// Use multiple parallel lists to decrease contention among unrelated objects.
#define COUNT 16
#define HASH(obj) ((((uintptr_t)(obj)) >> 5) & (COUNT - 1))//通过定义一个哈希算法将传入对象映射到数组上的一个下标。这个哈希算法审核及的很巧妙,是将对象指针在内存的地址和转化为无符号整形并右移5位,再跟15,也就是和0xF 做按位与运算,这样结果就不会超出数组大小。
#define LOCK_FOR_OBJ(obj) sDataLists[HASH(obj)].lock//哈希出对象的数组下标,然后取出与这个元素对应的lock
#define LIST_FOR_OBJ(obj) sDataLists[HASH(obj)].data
static SyncList sDataLists[COUNT];//sDataLists的声明,一个SyncList结构体数组,大小为16
//看完上面就知道了@synchronized 如何将一个锁和你正在同步的对象关联起来
enum usage { ACQUIRE, RELEASE, CHECK };
static SyncCache *fetch_cache(BOOL create)
{
_objc_pthread_data *data;
data = _objc_fetch_pthread_data(create);
if (!data) return NULL;
if (!data->syncCache) {
if (!create) {
return NULL;
} else {
int count = 4;
data->syncCache = (SyncCache *)
calloc(1, sizeof(SyncCache) + count*sizeof(SyncCacheItem));
data->syncCache->allocated = count;
}
}
// Make sure there's at least one open slot in the list.
if (data->syncCache->allocated == data->syncCache->used) {
data->syncCache->allocated *= 2;
data->syncCache = (SyncCache *)
realloc(data->syncCache, sizeof(SyncCache)
+ data->syncCache->allocated * sizeof(SyncCacheItem));
}
return data->syncCache;
}
void _destroySyncCache(struct SyncCache *cache)
{
if (cache) free(cache);
}
static SyncData* id2data(id object, enum usage why)
{
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
SyncData **listp = &LIST_FOR_OBJ(object);
SyncData* result = NULL;
#if SUPPORT_DIRECT_THREAD_KEYS
// Check per-thread single-entry fast cache for matching object
BOOL fastCacheOccupied = NO;
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
if (data) {
fastCacheOccupied = YES;
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
require_action_string(result->threadCount > 0, fastcache_done,
result = NULL, "id2data fastcache is buggy");
require_action_string(lockCount > 0, fastcache_done,
result = NULL, "id2data fastcache is buggy");
switch(why) {
case ACQUIRE: {
lockCount++;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
break;
}
case RELEASE:
lockCount--;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
fastcache_done:
return result;
}
}
#endif
// Check per-thread cache of already-owned locks for matching object
SyncCache *cache = fetch_cache(NO);
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
result = item->data;
require_action_string(result->threadCount > 0, cache_done,
result = NULL, "id2data cache is buggy");
require_action_string(item->lockCount > 0, cache_done,
result = NULL, "id2data cache is buggy");
switch(why) {
case ACQUIRE:
item->lockCount++;
break;
case RELEASE:
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
cache_done:
return result;
}
}
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
spinlock_lock(lockp);
{
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
result = p;
// atomic because may collide with concurrent RELEASE
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = object;
result->threadCount = 1;
goto done;
}
}
// malloc a new SyncData and add to list.
// XXX calling malloc with a global lock held is bad practice,
// might be worth releasing the lock, mallocing, and searching again.
// But since we never free these guys we won't be stuck in malloc very often.
result = (SyncData*)calloc(sizeof(SyncData), 1);
result->object = object;
result->threadCount = 1;
recursive_mutex_init(&result->mutex);
result->nextData = *listp;
*listp = result;
done:
spinlock_unlock(lockp);
if (result) {
// Only new ACQUIRE should get here.
// All RELEASE and CHECK and recursive ACQUIRE are
// handled by the per-thread caches above.
require_string(result != NULL, really_done, "id2data is buggy");
require_action_string(why == ACQUIRE, really_done,
result = NULL, "id2data is buggy");
require_action_string(result->object == object, really_done,
result = NULL, "id2data is buggy");
#if SUPPORT_DIRECT_THREAD_KEYS
if (!fastCacheOccupied) {
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);
} else
#endif
{
// Save in thread cache
if (!cache) cache = fetch_cache(YES);
cache->list[cache->used].data = result;
cache->list[cache->used].lockCount = 1;
cache->used++;
}
}
really_done:
return result;
}
BREAKPOINT_FUNCTION(
void objc_sync_nil(void)
);
// Begin synchronizing on 'obj'.
// Allocates recursive mutex associated with 'obj' if needed.
// Returns OBJC_SYNC_SUCCESS once lock is acquired.
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, ACQUIRE);
require_action_string(data != NULL, done, result = OBJC_SYNC_NOT_INITIALIZED, "id2data failed");
result = recursive_mutex_lock(&data->mutex);
require_noerr_string(result, done, "mutex_lock failed");
} else {
// @synchronized(nil) does nothing
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();//如果传入的对象时nil,啥事也不干,可以通过符号断点调试objc_sync_nil
}
done:
return result;
}
// End synchronizing on 'obj'.
// Returns OBJC_SYNC_SUCCESS or OBJC_SYNC_NOT_OWNING_THREAD_ERROR
int objc_sync_exit(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, RELEASE);
require_action_string(data != NULL, done, result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR, "id2data failed");
result = recursive_mutex_unlock(&data->mutex);
require_noerr_string(result, done, "mutex_unlock failed");
} else {
// @synchronized(nil) does nothing
//如果传入的对象时nil,啥事也不干
}
done:
if ( result == RECURSIVE_MUTEX_NOT_LOCKED )
result = OBJC_SYNC_NOT_OWNING_THREAD_ERROR;
return result;
}
还有啥不明白的
- #define HASH(obj) ((((uintptr_t)(obj)) » 5) 这里为啥右移5位???
- 传入对象中途变为nil了,怎么处理,还是没有在源码中找到印证
参考
- 官方文档
- @synchronized源码
- 关于 @synchronized,这儿比你想知道的还要多
- 翻译自 Ryan Kaplan 的 More than you want to know about @synchronized